القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-02
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-05
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-10
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-11
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-17
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-18
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-23
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-02-25
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-03-01
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-03-03
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-03-16
القسم:
الحوسبة المتنقلة وتطبيقات الأجهزة الذكيةالمساق:
تنقيب البيانات Data Miningالمحاضر:
إياد حسني محمد الشاميتاريخ النشر : 2020-03-24
اسم المدرس : إياد حسني محمد الشامي
الكلية : كلية تكنولوجيا المعلومات
القسم : الحوسبة المتنقلة وتطبيقات الأجهزة الذكية
اسم المساق : تنقيب البيانات Data Mining
رقم المساق : SDEV 3304
وصف المساق :
Faculty of Information Technology – Islamic University Gaza
Data Mining
SDEV 3304
Course Syllabus
General Information
Course’s Description
This course has been designed to give students an introduction to data mining and hands on experience with all phases of the data mining process using real data and modern tools. It covers many topics such as data formats, and cleaning; make prediction using supervised and unsupervised learning using Python and other tools, and sound evaluation methods; and data/knowledge visualization.
Course’s Objectives
This course is designed to achieve a number of goals for each student such as:
Course’s Outcome
By the end of this course the students should be able to:
Text book & References
Course’s Outline “topics that will be covered”
Week # |
Topic |
Notes |
1 |
Introduction to Data Mining |
|
2 3 |
Data Understanding and Data Preparation |
|
|
Knowledge Extraction Using Machine Learning Techniques |
|
4 5 6 |
Supervised Learning - Classification |
|
7 |
Supervised Learning - Regression |
|
8 9 |
Unsupervised Learning - Clustering |
|
10 11 |
Unsupervised Learning - Association Rules |
|
12 |
Unsupervised Learning - Outlier Detection |
|
|
|
|
13 |
Data Visualization and Knowledge Representation |
|
14 |
Data Science’s Hot Topics |
|
15 |
Project Presentation and Discussion |
|
Teaching methods
Evaluation criteria “Grades”
Course’s Tools
Course’s Rules
مركز التميز والتعليم الإلكتروني | الجامعة الإسلامية بغزة
هاتف: 2644400 8 970+ داخلي 1571| فاكس:264 4800 8 970+
البريد الإلكتروني: elearning@iugaza.edu.ps